hadoop-04

  1. 1. MapReduce概述
    1. 1.1. MapReduce核心思想
    2. 1.2. MapReduce编程模型
    3. 1.3. MapReduce编程实例——词频统计
  2. 2. MapReduce工作原理
    1. 2.1. MapReduce工作过程
    2. 2.2. MapTask工作原理
    3. 2.3. ReduceTask工作原理
    4. 2.4. Shuffle工作原理
  3. 3. MapReduce编程组件
    1. 3.1. InputFormat组件
    2. 3.2. Maper组件
    3. 3.3. Reducer组件
    4. 3.4. Partitioner组件
    5. 3.5. Combiner组件
    6. 3.6. OutputFormat组件
  4. 4. MapReduce运行模式
    1. 4.1. 本地运行模式
    2. 4.2. 集群运行模式
  5. 5. MapReduce性能优化策略
    1. 5.1. 数据输入
    2. 5.2. Map阶段
    3. 5.3. Reduce阶段
    4. 5.4. Shuffle阶段
    5. 5.5. 其他调优属性
  6. 6. MapReduce经典案例——倒排索引
    1. 6.1. 倒排索引介绍
    2. 6.2. 需求及分析
  7. 7. MapReduce经典案例——数据去重
    1. 7.1. 数据去重介绍
    2. 7.2. 需求及分析
  8. 8. MapReduce经典案例——TopN
    1. 8.1. TopN分析法介绍
    2. 8.2. 需求及分析

MapReduce概述

MapReduce是Hadoop系统核心组件之一,它是一种可用于大数据并行处理的计算模型、框架和平台,主要解决海量数据的计算,是目前分布式计算模型中应用较为广泛的一种。

NULL 传统并行计算框架 MapReduce
集群架构/容错性 共享式(共享内存/共享存储),容错性差 非共享式,容错性好
硬件/价格/扩展性 刀片服务器、高速网、SAN,价格贵,扩展性差 普通PC机,便宜,扩展性好
编程/学习难度 what-how,难 what,简单
适用场景 实时、细粒度计算、计算密集型 批处理、非实时、数据密集型

MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上。

MapReduce核心思想

MapReduce的核心思想是“分而治之”。所谓“分而治之”就是把一个复杂的问题,按照一定的“分解”方法分为等价的规模较小的若干部分,然后逐个解决,分别找出各部分的结果,把各部分的结果组成整个问题的结果,这种思想来源于日常生活与工作时的经验,同样也完全适合技术领域。
MapReduce设计的一个理念就是“计算向数据靠拢”,而不是“数据向计算靠拢”,因为,移动数据需要大量的网络传输开销

MapReduce作为一种分布式计算模型,它主要用于解决海量数据的计算问题。使用MapReduce操作海量数据时,每个MapReduce程序被初始化为一个工作任务,每个工作任务可以分为Map和Reduce两个阶段。

  • Map阶段
    负责将任务分解,即把复杂的任务分解成若干个“简单的任务”来并行处理,但前提是这些任务没有必然的依赖关系,可以单独执行任务。
  • Reduce阶段
    负责将任务合并,即把Map阶段的结果进行全局汇总。

MapReduce就是“任务的分解与结果的汇总”。即使用户不懂分布式计算框架的内部运行机制,但是只要能用Map和Reduce思想描述清楚要处理的问题,就能轻松地在Hadoop集群上实现分布式计算功能。


优点:

  • 易于编程
  • 良好的扩展性
  • 高容错性
  • 适合PB级以上海量数据的离线处理
    缺点:
  • 不擅长实时计算
  • 不擅长流式计算
  • 不擅长DAG计算

  1. 分布式的运算程序往往需要分成至少2个阶段。
  2. 第一个阶段的MapTask并发实例,完全并行运行,互不相干。
  3. 第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。
  4. MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

MapReduce编程模型

MapReduce是一种编程模型,用于处理大规模数据集的并行运算。使用MapReduce执行计算任务的时候,每个任务的执行过程都会被分为两个阶段,分别是Map和Reduce,其中Map阶段用于对原始数据进行处理,Reduce阶段用于对Map阶段的结果进行汇总,得到最终结果。

一个完整的Map Reduce程序在分布式运行时有三类实例进程:

  1. MrAppMaster :负责整个程序的过程调度以及状态协调
  2. MapTask: 负责Map阶段的整个数据处理流程
  3. ReduceTask: 负责Reduce阶段的整个数据处理流程

MapReduce编程实例——词频统计

  1. 首先,MapReduce通过默认组件TextInputFormat将待处理的数据文件(如text1.txt和text2.txt),把每一行的数据都转变为<key,value>键值对。
  2. 其次,调用Map()方法,将单词进行切割并进行计数,输出键值对作为Reduce阶段的输入键值对。
  3. 最后,调用Reduce()方法将单词汇总、排序后,通过TextOutputFormat组件输出到结果文件中。

  • 序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
  • 反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。

Java的序列化是一个重量级序列化框架( Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header, 继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制 (Witable) 。
Hadoop序列化特点:
(1)紧凑:高效使用存储空间。
(2)快速:读写数据的额外开销小。
(3)可扩展:随着通信协议的升级而可升级
(4)互操作:支持多语言的交互

MapReduce工作原理

MapReduce工作过程

MapTask工作原理

MapTask作为MapReduce工作流程前半部分,它主要经历5个阶段,分别是Read阶段、Map阶段、Collect阶段、Spill阶段和Combiner阶段。

ReduceTask工作原理

ReduceTask的工作过程主要经历了5个阶段,分别是Copy阶段、Merge阶段、Sort阶段、Reduce阶段和Write阶段。

Shuffle工作原理

Shuffle是MapReduce的核心,它用来确保每个reducer的输入都是按键排序的。它的性能高低直接决定了整个MapReduce程序的性能高低,map和reduce阶段都涉及到了shuffle机制。

MapReduce编程组件

InputFormat组件

主要用于描述输入数据的格式,它提供两个功能,分别是数据切分和为Mapper提供输入数据。

Maper组件

Hadoop提供的Mapper类是实现Map任务的一个抽象基类,该基类提供了一个map()方法。

Reducer组件

Map过程输出的键值对,将由Reducer组件进行合并处理,最终的某种形式的结果输出。

Partitioner组件

Partitioner组件可以让Map对Key进行分区,从而可以根据不同的key分发到不同的Reduce中去处理,其目的就是将key均匀分布在ReduceTask上

Combiner组件

Combiner组件的作用就是对Map阶段的输出的重复数据先做一次合并计算,然后把新的(key,value)作为Reduce阶段的输入。

OutputFormat组件

OutputFormat是一个用于描述MapReduce程序输出格式和规范的抽象类。

MapReduce运行模式

本地运行模式

在当前的开发环境模拟MapReduce执行环境,处理的数据及输出结果在本地操作系统。

集群运行模式

把MapReduce程序打成一个Jar包,提交至Yarn集群上去运行任务。由于Yarn集群负责资源管理和任务调度,程序会被框架分发到集群中的节点上并发的执行,因此处理的数据和输出结果都在HDFS文件系统中。

MapReduce性能优化策略

使用Hadoop进行大数据运算,当数据量极其大时,那么对MapReduce性能的调优重要性不言而喻,尤其是Shuffle过程中的参数配置对作业的总执行时间影响特别大,我们可以从五个方面对MapReduce程序进行性能调优,分别是数据输入、Map阶段、Reduce阶段、Shuffle阶段和其他调优属性方面。

数据输入

在执行MapReduce任务前,将小文件进行合并,大量小文件会产生大量的map任务,增大map任务装载次数,而任务装载较耗时,从而导致MapReduce运行速度较慢。因此采用CombineTextInputFormat来作为输入,解决输入端大量的小文件场景。

Map阶段

  • 减少溢写(spill)次数
  • 减少合并(merge)次数
  • 在map之后,不影响业务逻辑前提下,先进行combine处理,减少 I/O

Reduce阶段

  • 合理设置map和reduce数
  • 设置map、reduce共存
  • 规避使用reduce
  • 合理设置reduce端的buffer

Shuffle阶段

Shuffle阶段的调优就是给Shuffle过程尽量多地提供内存空间,以防止出现内存溢出现象,可以由参数mapred.child.java.opts来设置,任务节点上的内存大小应尽量大。

其他调优属性

MapReduce还有一些基本的资源属性的配置,这些配置的相关参数都位于mapred-default.xml文件中,我们可以合理配置这些属性提高MapReduce性能,例如合理设置MapTask、ReduceTask等参数。

MapReduce经典案例——倒排索引

倒排索引介绍

倒排索引是文档检索系统中最常用的数据结构,被广泛应用于全文搜索引擎。倒排索引主要用来存储某个单词(或词组)在一组文档中的存储位置的映射,提供了可以根据内容来查找文档的方式,而不是根据文档来确定内容,因此称为倒排索引(Inverted Index)。带有倒排索引的文件我们称为倒排索引文件,简称倒排文件(Inverted File)。

需求及分析

现假设有三个源文件file1.txt、file2.txt和file3.txt,需要使用倒排索引的方式对这三个源文件内容实现倒排索引,并将最后的倒排索引文件输出。

首先,使用默认的TextInputFormat类对每个输入文件进行处理,得到文本中每行的偏移量及其内容。Map过程首先分析输入的<key,value>键值对,经过处理可以得到倒排索引中需要的三个信息:单词、文档名称和词频。

经过Map阶段数据转换后,同一个文档中相同的单词会出现多个的情况,而单纯依靠后续Reduce阶段无法同时完成词频统计和生成文档列表,所以必须增加一个Combine阶段,先完成每一个文档的词频统计。

经过上述两个阶段的处理后,Reduce阶段只需将所有文件中相同key值的value值进行统计,并组合成倒排索引文件所需的格式即可。

MapReduce经典案例——数据去重

数据去重介绍

数据去重主要是为了掌握利用并行化思想来对数据进行有意义的筛选,数据去重指去除重复数据的操作。在大数据开发中,统计大数据集上的多种数据指标,这些复杂的任务数据都会涉及数据去重。

需求及分析

文件file1.txt本身包含重复数据,并且与file2.txt同样出现重复数据,现要求使用Hadoop大数据相关技术对以上两个文件进行去重操作,并最终将结果汇总到一个文件中。

  1. 编写MapReduce程序,在Map阶段采用Hadoop默认作业输入方式后,将key设置为需要去重的数据,而输出的value可以任意设置为空。
  2. 在Reduce阶段,不需要考虑每一个key有多少个value,可以直接将输入的key复制为输出的key,而输出的value可以任意设置为空,这样就会使用MapReduce默认机制对key(也就是文件中的每行内容)自动去重。

MapReduce经典案例——TopN

TopN分析法介绍

TopN分析法是指从研究对象中按照某一个指标进行倒序或正序排列,取其中所需的N个数据,并对这N个数据进行重点分析的方法。

需求及分析

现假设有数据文件num.txt,现要求使用MapReduce技术提取上述文本中最大的5个数据,并最终将结果汇总到一个文件中。

  1. 先设置MapReduce分区为1,即ReduceTask个数一定只有一个。我们需要提取TopN,即全局的前N条数据,不管中间有几个Map、Reduce,最终只能有一个用来汇总数据。
  2. 在Map阶段,使用TreeMap数据结构保存TopN的数据,TreeMap默认会根据其键的自然顺序进行排序,也可根据创建映射时提供的 Comparator进行排序,其firstKey()方法用于返回当前集合最小值的键。
  3. 在Reduce阶段,将Map阶段输出数据进行汇总,选出其中的TopN数据,即可满足需求。这里需要注意的是,TreeMap默认采取正序排列,需求是提取5个最大的数据,因此要重写Comparator类的排序方法进行倒序排序。